Sáng kiến Một vài kinh nghiệm khắc phục những sai lầm cho học sinh khi giải Toán Đại số 7
Bạn đang xem tài liệu "Sáng kiến Một vài kinh nghiệm khắc phục những sai lầm cho học sinh khi giải Toán Đại số 7", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.
Tóm tắt nội dung tài liệu: Sáng kiến Một vài kinh nghiệm khắc phục những sai lầm cho học sinh khi giải Toán Đại số 7
I. ĐẶT VẤN ĐỀ. Là một giáo viên dạy toán ở trường THCS tôi luôn suy nghĩ để làm sao kiến thức truyền đạt đến các em một cách đơn giản, dễ hiểu nhưng chắc chắn, các em có những kiến thức cơ bản vững vàng, tạo điều kiện cho các em yêu thích môn toán, tránh cho các em có suy nghĩ môn toán là khô khan và khó tiếp cận. Tuy vậy, trong việc truyền đạt kiến thức cho các em và qua những giờ luyện tập, giảng dạy trên lớp, kiểm tra bài tập về nhà tôi nhận thấy một điều, có những kĩ năng giải toán mà học sinh rất rễ bị ngộ nhận và mắc sai lầm trong khi giải (kể cả học sinh giỏi). Từ đó tôi đã đi sâu vào tìm tòi để tìm ra những nguyên nhân rồi từ đó có những biện pháp hữu hiệu để hạn chế và chấm rứt những sai lầm mà học sinh hay mắc phải. Trong chương trình toán ở THCS với lương kiến thức lớn và chặt chẽ, yêu cầu học sinh cần phải ghi nhớ, thì môn đại số 7 học sinh khi giải toán cần phải nắm chắc kiến thức cơ bản, biết vận dụng hợp lí đối với từng dạng bài tập, từ đó hình thành kĩ năng và là cơ sở nắm bắt được các kiến thức nâng cao hơn. Năm nay tôi được dạy môn đại số 7, tôi nhận thấy việc “ khắc phục những sai lầm cho học sinh khi giải toán đại số 7 “ là rất quan trọng. Vì đó là những công việc thường xuyên diễn ra khi người giáo viên lên lớp, chính vì vậy tôi quyết định chọn đề tài : “ Một vài kinh nghiệm khắc phục những sai lầm cho học sinh khi giải toán đại số 7”. Sau đây là nội dung của đề tài. 1 Từ những thực trạng trên, trong qúa trình giảng dạy tôi cố gắng làm sao để các em học sinh ngày thêm yêu thích môn toán hơn, hình thành cho học sinh kĩ năng giải toán, tạo điều kiện giúp các em tiếp thu bài một cách chủ động, sáng tạo và tránh sai sót. 2. Các bbước thực hiện 2.1 Một số dạng toán . Môn đại số 7 ở trường THCS học sinh được làm quen với một số dạng bài tập sau: 1.1. Tính giá trị của biểu thức. 1.2. Tìm x. 1.3. Cộng, trừ, nhân chia số hữu tỉ. 1.4. Lũy thừa của một số hữu tỉ. 1.5. Giá trị tuyệt đối của một số hữu tỉ. 1.6. Cộng, trừ đơn thức, đa thức. 1.7. Nhân đơn thức, đa thức. 1.8. Tìm nghiệm của đa thức một biến. 1.9. Đại lượng tỉ lệ thuận, đại lượng tỉ lệ nghịch. 1.10. Hàm số. .. Đối với từng thể loại thì có những cách giải riêng, chính vì vậy cũng có những sai sót riêng như: kĩ năng thực hiện các phép tính, không nhớ kiến thức cơ bản, ngộ nhận khi vận dụng các quy tắc, tính chất Tôi xin thông qua một số bài tập của một số dạng để chúng ta cùng xem xét. 2.1.1, Tính giá trị của biểu thức. Ví dụ 1. Tính gia trị của biểu thức A = xy – x3y + x4z3 tại x = -1, y = -1, z = -2 Học sinh giải: 3 Ta thấy học sinh đã nhầm phép tính chia hai lũy thừa cùng cơ số và sai lầm thư hai là cộng số mũ chứ không phải trừ, ngoài ra một số em còn nhân hoặc chia số mũ. Lời giải đúng: 5 8 8 3 3 3 Ta có: x = 4 4 4 8 5 3 3 x : 4 4 3 3 27 x 4 64 2.13. Cộng, trừ, nhân chia số hữu tỉ. 2 Ví dụ 3. Tính 0,4 : 3 Học sinh giải: 2 4 2 2.( 4) 8 4 0,4 : = : = 3 10 3 10.3 30 15 Học sinh đã nhầm khi chia một phân số cho một phân số lấy tử phân số bị chia nhân với tử của phân số bị chia và mẫu của phân số bị chia nhân với mẫu của phân số chia, ngoài ra còn một số em có một số sai lầm khác như: về dấu, không biết rút gọn Lời giải đúng: 2 4 3 3.( 4) 3 0,4 : = . = 3 10 2 10.2 5 2.1.4, Lũy thừa của một số hữu tỉ. Ví dụ 4. Học sinh giải một số phép tính sau: a, 5 2 . 5 3 5 6 b, 0,75 3 . 0,75 0,75 2 5 * Nếu x + 1 > 0 thì x +1 = x + 1 =>x +1 = 2 => x + 1 = 2 => x = 1 Vậy x = 1 hoặc x = -3 2.1.6, Cộng, trừ đơn thức đa thức. Ví dụ 6. Thực hiện phép tính sau: 2xyz2 – 5xyz2 +8xyz2 Học sinh giải: 2xyz2 – 5xyz2 +8xyz2 = (2 +5 + 8)xyz2 = 15xyz2 hoặc 2xyz2 – 5xyz2 +8xyz2 = (2 -5 + 8)xyz2+2+2 = 15xyz6 Ở trên học sinh đã nhầm khi cộng các đơn thức đồng dạng hoặc vận dụng sai quy tắc cộng các đơn thức đồng dạng Lời giải đúng: 2xyz2 – 5xyz2 +8xyz2 = (2 -5 + 8)xyz2 = 5xyz2 2.1.7, Nhân đơn thức, đa thức. Ví dụ 7. Thực hiện phép tính: -5x3y6. (-7x9y8). (-xyz). Học sinh giải: -5x3y6. (-7x9y8). (-xyz). = (-5)(-7)(-1)(x3.x9. x)(y6.y8.y)z =35x27y48z. Học sinh đã thực hiện sai quy tắc về dấu, phép nhân lũy thữa. Lời giải đúng: -5x3y6. (-7x9y8). (-xyz). = (-5)(-7)(-1)(x3.x9. x)(y6.y8.y)z =-35x13 y15 z. 2.1.8, Tìm nghiệm của đa thức một biến. Ví dụ 8. Tìm nghiệm của đa thức: f(x) = (2x – 2)(x +1) 7 a, Các điểm (1,-1), (0,1) có thuộc hàm số không ? b, Tìm giá trị của x để y = 3. Học sinh giải a, Thay x = -1, vào hàm số f(x) ta có: -2.(-1) + 1 = 3. Thay x = 1 vào hàm số f(x) ta có: -2.1 + 1 = -1. Vậy hàm số không đi qua các điểm (1,-1), (0,1). b, Ta có -2x + 1 = 3 => -2x = 4 => x = -2. Vậy x = -2 thì y = 3 Ở trên học sinh đã mắc sai lầm: - Xác định sai hoành độ và tung độ. - Quy tắc chuyển vế. Lời giải đúng: a, Thay x = 1, vào hàm số f(x) ta có: y = -2. 1 + 1 = -1. Thay x = 0 vào hàm số f(x) ta có: y = -2.0 + 1 = 1. Vậy hàm số đi qua các điểm (1,-1), (0,1). b, Ta có -2x + 1 = 3 => -2x = 2 => x = -1. Vậy x = -1 thì y = 3 3. Các biện pháp khắc phục sai lầm cho học sinh khi giải toán đại số 7. * Biện pháp 1. Củng cố khắc sâu kiến thức cơ bản. Khi dạy bất kì một dạng toán (bài tập) nào cho học sinh cần phải yêu cầu học sinh chắc nắm kiến thức cơ bản những khái niệm, tính chất, công thức Trong quá trình đưa ra các tính chất, công thức giáo viên cần giải thích tỉ mỉ kèm các ví dụ cụ thể và bài tập vận dụng để học sinh hiểu đầy đủ về kiến thức đó mà vận dụng vào giải toán. 9 4. Kết quả. Kết quả giảng dạy cuối năm đạt được như sau: Xếp loại Lớp TB trở lên Giỏi Khá TB Yếu, kém 7A(39) 3=7,7% 11=28,2% 15=38,5% 10=25,6% 29=74,4% 7C(37) 3=8,1% 6=16,2% 18=48,6% 10 = % 27=27,1% 8C(40) 2=5 % 7=17,5% 20=50% 11=27,5% 29=72,5% Tổng(116) 8 = 6,9% 24= 20,7% 53=45,7% 31= 26,7% 85=73,3% Với những gì tôi trình bày trên đây thật chưa hết những gì mà người giáo viên thực hiện trong quá trình giảng dạy đối với các em học sinh, nhưng đó là những việc tôi đã thường xuyên làm để giúp đỡ các em tránh được những sai lầm khi giải toán 7. Kết quả kiểm tra định kì cũng như kiểm tra chất lượng có khả quan hơn, các em giải toán phạm sai lầm giảm đi nhiều, học sinh có định hướng rõ ràng khi giải một bài toán, học sinh được rèn luyện phương pháp suy nghĩ lựa chọn, tính linh hoạt sáng tao, hạn chế sai sót, học sinh được giáo dục và bồi dưỡng tính kỉ luật trận tự biết tôn trọng những quy tắc đã định 11 - Thêng xuyªn trau råi kiÕn thøc, ph¬ng ph¸p d¹y häc ®Ó t¹o ®îc høng thó häc tËp cho häc sinh. - CÇn quan t©m ®Õn mäi häc sinh trong líp, cã kÕ ho¹ch d¹y bï nh÷ng lç hæng kiÕn thøc cho c¸c em häc sinh yÕu kÐm, t¹o cho c¸c em niÒm tin v÷ng vµng vµ høng thó khi häc to¸n, tr¸nh g©y cho c¸c em cã c¶m gi¸c häc to¸n lµ nÆng nÒ vµ kh« khan. * Ý KIẾN ĐỀ NGHỊ §Ó cho häc sinh häc tËp cã kÕt qu¶ cao, t«i cã mét sè ý kiÕn ®Ò xuÊt sau: - Gi¸o viªn ph¶i nghiªn cøu s©u s¾c râ rµng vÒ néi dung bµi d¹y, t×m hiÓu ph©n lo¹i ®èi tîng häc sinh ®Ó cã kÕ ho¹ch gi¶ng d¹y thÝch hîp, tõ ®ã dù kiÕn nh÷ng viÖc cÇn híng dÉn häc sinh. §Æc biÖt gi¸o viªn ph¶i nghiªn cøu n¾m v÷ng néi dung s¸ch gi¸o khoa, ®a ra ph¬ng ph¸p truyÒn thô hiÖu qu¶ nhÊt, gi¸o viªn ph¶i thêng xuyªn rót kinh nghiÖm qua mçi bµi gi¶ng, xem xÐt bµi nµo chç nµo häc sinh hiÓu nhanh, tèt nhÊt, chç nµo cha thµnh c«ng ®Ó rót kinh nghiÖm t×m ph¬ng ph¸p kh¸c cã hiÖu qu¶ h¬n. - X©y dùng nÒ nÕp häc tËp cho häc sinh cã thãi quen chuÈn bÞ s¸ch vë ®å dïng häc tËp, nÕu bµi tËp vÒ nhµ cha gi¶i ®îc ph¶i hái b¹n vµ ph¶i b¸o c¸o víi thÇy tríc khi vµo líp. Khi gi¶ng bµi gi¸o viªn ®Æt c©u hái cÇn phï hîp víi tõng ®èi tîng häc sinh, c©u hái ph¶i ng¾n gän dÔ hiÓu vµ c©u hái ®ã ph¶i trùc tiÕp gi¶i quyÕt vÊn ®Ò c¶ líp ®ang nghiªn cøu. - Gi¸o viªn híng dÉn häc sinh ph¬ng ph¸p häc tËp ph¸t triÓn t duy vµ rÌn luyÖn kü n¨ng. - §øng tríc mét vÊn ®Ò gi¸o viªn cÇn cho häc sinh ph©n biÖt qua hÖ thèng c©u hái, hiÓu ra ®©u lµ ®iÒu ®· cho, ®©u lµ ®iÒu ph¶i t×m.tõ ®ã häc sinh tù m×nh t×m ra c©u tr¶ lêi. 13 MỤC LỤC Nội dung Trang I. Đặt vấn đề. 1 II. Nội dung đề tài. 1. Một số dạng toán. 2-8 2. Các biện pháp khắc phục sai lầm cho học sinh khi giải toán đại số 7. 8-9 3. Kết quả. 9 III. Kết luận. 10-11 15
File đính kèm:
- sang_kien_mot_vai_kinh_nghiem_khac_phuc_nhung_sai_lam_cho_ho.doc